How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs
نویسندگان
چکیده
RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions.
منابع مشابه
RIM-BPs Mediate Tight Coupling of Action Potentials to Ca2+-Triggered Neurotransmitter Release
Ultrafast neurotransmitter release requires tight colocalization of voltage-gated Ca(2+) channels with primed, release-ready synaptic vesicles at the presynaptic active zone. RIM-binding proteins (RIM-BPs) are multidomain active zone proteins that bind to RIMs and to Ca(2+) channels. In Drosophila, deletion of RIM-BPs dramatically reduces neurotransmitter release, but little is known about RIM-...
متن کاملA family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones.
RIMs are presynaptic active zone proteins that regulate neurotransmitter release. We describe two related genes that encode proteins with identical C-terminal sequences that bind to the conserved PDZ domain of RIMs via an unusual PDZ-binding motif. These proteins were previously reported separately as ELKS, Rab6-interacting protein 2, and CAST, leading us to refer to them by the acronym ERC. Al...
متن کاملRIM Proteins Activate Vesicle Priming by Reversing Autoinhibitory Homodimerization of Munc13
At a synapse, the presynaptic active zone mediates synaptic vesicle exocytosis. RIM proteins are active zone scaffolding molecules that--among others--mediate vesicle priming and directly or indirectly interact with most other essential presynaptic proteins. In particular, the Zn²+ finger domain of RIMs binds to the C₂A domain of the priming factor Munc13, which forms a homodimer in the absence...
متن کاملELKS active zone proteins as multitasking scaffolds for secretion
Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that ...
متن کاملRIM genes differentially contribute to organizing presynaptic release sites.
Tight coupling of Ca(2+) channels to the presynaptic active zone is critical for fast synchronous neurotransmitter release. RIMs are multidomain proteins that tether Ca(2+) channels to active zones, dock and prime synaptic vesicles for release, and mediate presynaptic plasticity. Here, we use conditional knockout mice targeting all RIM isoforms expressed by the Rims1 and Rims2 genes to examine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 91 شماره
صفحات -
تاریخ انتشار 2016